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ABSTRACT
To address the issue of frequency regulation inAC-islandedmicrogrids (MGs), this paper introduces a novel approach for adjusting
primary controller gains for AC-islandedMGs. The proposed approach uses the linear matrix inequality (LMI) for polytopic linear
parameter varying (P-LPV) modelling based on the H

∞
control theory and principal component analysis (PCA) algorithm. The

objective is to regulate the MG frequency while considering the nonlinearity and uncertainty of the system. To achieve optimal
control gains, the method considers all the system uncertainties in a P-LPV modelling of the system. The PCA algorithm reduces
the scheduling parameter region, and the optimal control gains are computed by solving the relevant LMIs defined on the obtained
P-LPVmodel based onH∞ performance and stability achievement. The primary control gains are optimised tominimise the errors
between the optimal and actual control signals. Importantly, the suggestedmethod preserves the order and structure of the primary
control, making it applicable to implement on digital hardware devices. In addition, the MG is simulated in MATLAB/Simulink,
and the simulation results demonstrate the authenticity, effectiveness, and efficiency of the proposed process for MG frequency
regulation in the presence of uncertainties, disturbances, nonlinearity, and dynamic changes in MGs.

1 Introduction

The rising popularity of microgrids (MGs) can be attributed to
economic incentives, the growth of renewable energy sources,
and increasing environmental awareness. MGs have a significant
impact on enhancing power flexibility, mitigating climate change
concerns,minimising energy losses, and reducing strain on trans-
mission lines. Additionally, they efficiently integrate distributed
generators (DGs) into the current energy infrastructure [1–3]. An
MG constitutes a localised, active power distribution network,
typically functioning at low voltage thresholds. It encompasses
an array of distributed inverter-based resources, local loads, and
energy storage systems. It operates as a controllable network
under the monitoring of a control system. MGs may operate

in two modes: grid-connected and islanded modes. In the grid-
connectedmode, voltage and frequency regulation depend on the
utility grid operation. As a result, the controllers are responsible
for managing the active and reactive output powers of DGs.
In islanded mode, the MG is disconnected from the utility
grid and operates autonomously. Consequently, the controllers
are responsible for regulating frequency and voltage, as well
as proportional active and reactive power sharing, to ensure
proper functioning [4, 5]. Hierarchical control represents the
predominant control framework in both grid-connected and
islanded modes within the context of MGs. This control method
is structured into primary, secondary, and tertiary levels [6]. The
primary control is responsible for regulating the MG voltage
and frequency in order to maintain stable proportional power-
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sharing. The secondary control is tasked with synchronising the
MG with the utility grid and compensating for any frequency
and voltage deviations caused by the primary level. The tertiary
control is designed to optimise the economic performance of the
MG and manage the power flow between the MG and the utility
grid [7–9].

In practical applications, MGs encounter challenges such as
parametric uncertainty and external disturbances. Classical con-
trollers may not always ensure stability under these conditions,
whereas robust control approaches are considered one of the
most effective methods to address these challenges [8, 10, 11].
The H

∞
control method is a robust technique utilised in various

systems due to its capacity to tolerate unstructured uncertainties
and unknown external disturbances. This method ensures sys-
tem stability in the presence of bounded external disturbances,
thereby limiting their impact and emphasising system robustness
in uncertain environments [12]. A literature review on the MG
control topic shows that theH

∞
control can be applied at primary

and secondary control levels. Reference [13] comprehensively
reviews H

∞
robust MG control methods. In [14], a distributed

robust frequency control approach is operationalised within the
secondary layer, employing H

∞
theory and pole placement con-

straints under the LMI framework. This methodology is designed
to adjust the frequency and govern the proportional active power-
sharing ratio in MGs, thereby enhancing the system’s stability
and distribution efficiency. A distributed secondary voltage and
frequency controller utilising H

∞
theory is implemented to

ensure the robust performance of the closed-loop system in
the presence of disturbances and sensor attacks [15]. The fault-
tolerant distributed control of MG is improved by [16] using
the LMI method and the mixed H2 / H

∞
controller. Also,

the computational complexity is decreased by decomposing the
system dynamics into first-order subsystems. In [17], a distributed
cooperative robust control technique has been developed for
use in the secondary layer of an MG hierarchical control sys-
tem. This technique takes into account communication link
disturbances and uncertainties. Necessary conditions for stability
are determined using H

∞
consensus-based control and a set of

LMIs. In [18], A robust distributed H∞ consensus-based control
mechanism is designed for AC MGs under communication fixed
time delay. In this paper, the application of Lyapunov theory
enables the determination of an upper limit for the time delay
that ensures the stability of the system.

The conventionalH
∞
synthesis method is associated with certain

limitations, including its inherent mathematical complexity (due
to changing operating conditions and consequently changing
the controller output) and the necessity for a highly accurate
systemmodel. Also, the controller complexity can be a substantial
challenge in real-world implementations.However, in this article,
these limitations have been resolved. There is no computational
complexity problem because the computational part of the
proposed method is done offline, and also by using the PCA
technique, the dimensions of the problem have been significantly
reduced.

Most of the proposed H
∞
controllers in the MG control topic

focus on the linear dynamics of MGs and employ robust linear
methodologies to address challenges related to frequency and
voltage regulations. Indeed, nonlinear terms in dynamic models

are not considered, while the nature of MGs includes many
nonlinear factors. Designing a controller in the presence of non-
linear factors is complex and requires much computation. Using
a linear parameter varying (LPV) model is a popular method
for designing robust controllers for systems with nonlinear and
uncertain dynamics [19–21]. In the LPV schemes, it is assumed
that the systemmodel is linear but depends on some time-varying
parameters called varying parameters. Using an LPV model, the
designed controller can adjust its parameters according to the
system conditions. The LPV-based controllers can improve the
stability, efficiency, and reliability of the MG operation [22–24].
Polytopic approaches to describe the uncertainties of an LPV
systemhave attracted considerable attention in the field of control
systems for practical applications. Their adoption is mainly
attributed to their robust performance in handling complex
nonlinear dynamics. This method extends the applicability of
traditional linear control strategies to a wider class of systems,
thereby providing a versatile framework to ensure system stability
and performance in the face of parametric variations and non-
linear behaviours. Consequently, P-LPV techniques represent a
pivotal advancement in the control of complex systems, aligning
with the evolving sector demands for precision, reliability, and
adaptability [25–27]. The actuators’ and sensors’ failure detection
and reconstruction inDCMGswith nonlinear loads are discussed
in [28], where a slidingmode technique was employed to produce
a novel robust gain-scheduling detector. Then, a polytopic quasi-
LPV approachwas devised to estimate component failure. In [29],
the LPV loop-shaping controller was proposed for grid-following
inverters to regulate their output active and reactive powers. An
LPV-modelled MG designs a mixed H2/ H∞

linear time-varying
state feedback architecture [30]. The reference [25] examines a
robust control method for frequency oscillation damping in an
islanded hybridMG. The LPVmodel hides the nonlinearity of the
wind turbine.

In most of the previous papers that proposed LPV modelling and
considered the nonlinear effects ofMG as varying parameters, the
number of scheduling signals is increased. This growth affects
the controller design process, increasing computing complexity,
conservatism, and scheduling region overbounding [31, 32].
Therefore, using a dimensionality reduction technique such as
a PCA algorithm is necessary to reduce the dimension of the
scheduling parameter [33, 34]. In the study presented in [35], a
robust structure is proposed for the voltage and current loops
of the primary control using P-LPV and H

∞
theory to regulate

the frequency and voltage of the MG. It does not preserve the
traditional structure of conventional controllers, while in the
method presented in this article, the structure is preserved and
only the adjustment of the control gains is desired.

Motivated by the advancements and constraints discussed in prior
literature, this paper introduces an innovative methodology for
frequency regulation in AC-islandedMGs. The approach involves
optimising the primary control gains and droop coefficients. The
proposed method uses a reduced P-LPV model of an MG to
design an LMI-based H

∞
control for its frequency regulation

in the presence of uncertainties, disturbances, and parameter
changes. The PCA algorithm reduces the dimension of the LPV
scheduling parameters to minimise the computational burden.
Unlike the previous approaches that changed the primary control
structure, in this paper, the architecture of the primary control
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system is preserved in its original form; however, a recalibration
of the gain values is undertaken. This adjustment is achieved
through the resolution of an optimisation problem conducted in
an offline setting, thereby refining the control strategy without
necessitating alterations to the underlying control structure.

Generally, the main contributions of this paper can be sum-
marised as follows:

Without changing the primary control structure, the primary
control gains and droop coefficients of all voltage source
inverters (VSIs) in the MG are adjusted such that the
system has a suitable robustness against nonlinear effects,
disturbances, and existing uncertainties. The efficiency of
the system is increased by defining an H

∞
performance

index, and therefore the stability robustness of the system
is improved. This reduces computational complexity and
improves scalability.

The rest of the paper proceeds as follows: Section 2 describes
the preliminaries of the P-LPV modelling of MG. Section 3
explains the reduced P-LPVmodel using the PCAalgorithm.
The proposed robust gain-tuning method is represented
in Section 4. Section 5 presents the numerical simulation
results. Finally, Section 6 states the conclusion.

2 Preliminaries

2.1 Primary Control Preliminaries

The primary control is responsible for regulating the voltage and
frequency, as well as maintaining the stability of MGs. Figures 1
and 2 display a typical primary control of a VSI. The primary
control comprises power, voltage, and current control loops. It
employs the conventional droop control strategy to achieve pro-
portional power-sharing in active and reactive power. The power
controller outputs include a reference voltage for the voltage
controller and a reference frequency for the inverter bridge. The
voltage controller generates the reference current for the current
controller, and ultimately, the reference voltage for the inverter
bridge is obtained through the current controller. Assuming that
switching ripples and high-frequency harmonics are negligible,
the VSI is theoretically conceptualised as an AC source within
the systemmodel. The inductive effective impedance between the
VSI and the AC bus is assumed to be high. The dynamic model of
the primary control, introduced in. . . [36–38], can be rewritten in
the form of:

𝑥̇1 = −𝜔𝑐𝑖𝑥1 + 𝜔𝑐𝑖 [𝑥6𝑥7 + 𝑥11𝑥12] (1)

𝑥̇2 = −𝜔𝑐𝑖𝑥2 + 𝜔𝑐𝑖 [−𝑥6𝑥12 + 𝑥11𝑥7] (2)

𝑥̇3 = −𝑥6 + 𝑢1 + 𝑉𝑖𝑛 (3)

𝑥̇4 = 𝐹𝑖 𝑥7 − 𝜔𝑏𝐶𝑓𝑖𝑥11 − 𝑥5 + 𝑢2 + 𝐾𝑃𝑉𝑖𝑉𝑖𝑛 (4)

𝑥̇5 = −𝑅𝑓𝑖𝑥5∕𝐿𝑓𝑖 − 𝑥6∕𝐿𝑓𝑖 + 𝑢3 + 𝐾𝑃𝐶𝑖𝐾𝑃𝑉𝑖𝑉𝑖𝑛∕𝐿𝑓𝑖 (5)

𝑥̇6 = 𝑥5∕𝐶𝑓𝑖 − 𝑥7∕𝐶𝑓𝑖 + 𝜔𝑛𝑖𝑥11 + 𝑢4 (6)

𝑥̇7 = −𝑅𝑐𝑖𝑥7∕𝐿𝑐𝑖 + 𝜔𝑛𝑖𝑥12 + 𝑥6∕𝐿𝑐𝑖 + 𝑢5 + 𝑑1 (7)

𝑥̇8 = −𝑥11 (8)

𝑥̇9 = 𝐹𝑖 𝑥12 + 𝜔𝑏𝐶𝑓𝑖𝑥6 − 𝑥10 + 𝑢6 (9)

𝑥̇10 = −𝑅𝑓𝑖𝑥10∕𝐿𝑓𝑖 − 𝑥11∕𝐿𝑓𝑖 + 𝑢7 (10)

𝑥̇11 = −𝜔𝑛𝑖𝑥6 + 𝑥10∕𝐶𝑓𝑖 − 𝑥12∕𝐶𝑓𝑖 + 𝑢8 (11)

𝑥̇12 = −𝑅𝑐𝑖𝑥12∕𝐿𝑐𝑖 − 𝜔𝑛𝑖𝑥7 + 𝑥11∕𝐿𝑐𝑖 + 𝑢9 + 𝑑2 (12)

where the state vector of 𝐷𝐺𝑖 , 𝑥 ∈ 𝑅12, is defined as:

𝑥 =
[
𝑥1 . . . 𝑥12

]𝑇
= [ 𝑃𝑖 𝑄𝑖 𝜙𝑑𝑖 𝛾𝑑𝑖 𝐼𝑙𝑑𝑖 𝑉𝑜𝑑𝑖 𝐼𝑜𝑑𝑖 𝜙𝑞𝑖 𝛾𝑞𝑖 𝐼𝑙𝑞𝑖 𝑉𝑜𝑞𝑖 𝐼𝑜𝑞𝑖 ]

𝑇
(13)

and 𝜙𝑑𝑖 ∶= ∫ (𝑉∗
𝑜𝑑𝑖

− 𝑉𝑜𝑑𝑖)𝑑𝑡, 𝜙𝑞𝑖 ∶= ∫ (𝑉∗
𝑜𝑞𝑖

− 𝑉𝑜𝑞𝑖)𝑑𝑡,
𝛾𝑑𝑖 ∶= ∫ (𝐼∗

𝑜𝑑𝑖
− 𝐼𝑜𝑑𝑖)𝑑𝑡, 𝛾𝑞𝑖 ∶= ∫ (𝐼∗

𝑜𝑞𝑖
− 𝐼𝑜𝑞𝑖)𝑑𝑡; 𝑑1 ∶= −𝑉𝑏𝑑𝑖∕𝐿𝑐𝑖 ,

and 𝑑2 ∶= −𝑉𝑏𝑞𝑖∕𝐿𝑐𝑖 are considered as disturbances.

The signals 𝑢𝑖, 𝑖 = 1, . . . , 9 are considered as actual control signals
according to Figure 2 which are defined as follows:

𝑢1 ∶= −𝑛𝑄𝑥2 (14)

𝑢2 ∶= −𝐾𝑃𝑉𝑖𝑛𝑄𝑥2 + 𝐾𝐼𝑉𝑖𝑥3 − 𝐾𝑃𝑉𝑖𝑥6 (15)

𝑢3 ∶ = −𝑚𝑃𝑖𝑥1𝑥10 − 𝐾𝑃𝐶𝑖𝐾𝑃𝑉𝑖𝑛𝑄𝑥2∕𝐿𝑓𝑖 + 𝐾𝐼𝐶𝑖𝑥4∕𝐿𝑓𝑖

+ 𝐾𝑃𝐶𝑖𝐾𝐼𝑉𝑖𝑥3∕𝐿𝑓𝑖 − 𝐾𝑃𝐶𝑖𝐾𝑃𝑉𝑖𝑥6∕𝐿𝑓𝑖

+ 𝐾𝑃𝐶𝑖𝐹𝑖𝑥7∕𝐿𝑓𝑖 − 𝐾𝑃𝐶𝑖𝜔𝑏𝐶𝑓𝑖𝑥11∕𝐿𝑓𝑖 (16)

𝑢4 ∶= −𝑚𝑃𝑖𝑥1𝑥11 (17)

𝑢5 ∶= −𝑚𝑃𝑖𝑥1𝑥12 (18)

𝑢6 ∶= −𝐾̄𝑃𝑉𝑖𝑥11 + 𝐾̄𝐼𝑉𝑖𝑥8 (19)

𝑢7 ∶ = 𝑚𝑃𝑖 𝑥1𝑥5 + 𝐾̄𝑃𝐶𝑖𝜔𝑏𝐶𝑓𝑖𝑥6∕𝐿𝑓𝑖 + 𝐾̄𝑃𝐶𝑖𝐾̄𝐼𝑉𝑖𝑥8∕𝐿𝑓𝑖

+ 𝐾̄𝐼𝐶𝑖𝑥9∕𝐿𝑓𝑖 − 𝐾̄𝑃𝐶𝑖𝑥10∕𝐿𝑓𝑖 − 𝐾̄𝑃𝐶𝑖𝐾̄𝑃𝑉𝑖𝑥11∕𝐿𝑓𝑖 (20)

𝑢8 ∶= 𝑚𝑃𝑖 𝑥1𝑥6 (21)

𝑢9 ∶= 𝑚𝑃𝑖 𝑥1𝑥7 (22)

As can be seen, these equations are nonlinear and contain some
disturbances. Moreover, operating conditions may change some
parameters (Iodi, Ioqi, Vodi, Voqi, Cfi, Rfi, Lfi, Lci, and Rci).
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FIGURE 1 Typical structure of primary control in MGs.

2.2 The P-LPVModel

A popular method for controlling nonlinear systems with uncer-
tain dynamics is the use of a P-LPV model. An P-LPV form of
standard state space equationwith state vector 𝑥 ∈ 𝑅𝑛, exogenous
input𝑤 ∈ 𝑅𝑛𝑤 , control input 𝑢 ∈ 𝑅𝑛𝑢 , control objective 𝑧∞ ∈ 𝑅𝑛𝑧 ,
and the varying parameter 𝜇 ∈ 𝑅𝜇̄ is represented in a compact
form as [39]:

𝑥̇ = 𝐴 (𝜇) 𝑥 + 𝐵1 (𝜇)𝑤 + 𝐵2 (𝜇) 𝑢

𝑧∞ = 𝐶 (𝜇) 𝑥 + 𝐷1 (𝜇)𝑤 + 𝐷2 (𝜇) 𝑢
(23)

All the matrices have appropriate dimensions and are limited to
the polytope P defined as the convex hull of the finite number of
matrices Q𝑖 , called the vertices model, as:

Q𝑖 =

(
𝐴𝑖 𝐵1𝑖 𝐵2𝑖

𝐶𝑖 𝐷1𝑖 𝐷2𝑖

)
, 𝑖 = 1, 2, . . . , 𝑁 (24)

whereN is the number of vertices. A convex polytopicmodelQ(𝜇)
of the system can be formed as:

Q (𝜇) =

(
𝐴 (𝜇) 𝐵1 (𝜇) 𝐵2 (𝜇)

𝐶 (𝜇) 𝐷1 (𝜇) 𝐷2 (𝜇)

)
(25)

Q (𝜇) ∈ P ∶= 𝐶𝑜 {Q𝑖, 𝑖 = 1, 2, . . . , 𝑁}

∶=

{
Q (𝜇) |Q (𝜇) =

𝑁∑
𝑖=1

𝛼𝑖Q𝑖,

𝑁∑
𝑖=1

𝛼𝑖 = 1, 𝛼𝑖 ≥ 0}

}
(26)

2.3 The P-LPVModel of a VSI

In this section, the P-LPV model of a typical VSI is presented.
The P-LPV model of a VSI is a mathematical representation that
captures the dynamic behaviour of the inverter under various
operating conditions. The model is parameterised by certain
variables that can change over time or with the operating point.
Hence the term ‘parameter-varying’. The P-LPV model is useful
for designing advanced control strategies that can adapt to
changing conditions and ensure optimal performance of the VSI
across its entire operating range. It’s a more flexible approach
compared to traditional fixed-parameter models and is particu-
larly beneficial in applications where the system dynamics are
highly nonlinear or subject to significant external disturbances.

In the context of the P-LPV model, the following variables are
defined:

∙ Scheduling signal vector (ρ): This vector includes the param-
eters that the LPV model depends on. These parameters can
vary over time and are known as scheduling parameters. They
could represent factors like Iodi, Ioqi, Vodi, Voqi, Cfi, Rfi, Lfi, Lci,
and Rci that influence the system’s dynamics.
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FIGURE 2 Primary control blocks of MGs: (a) Power control, (b) Voltage control and (c) Current control.
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∙ Exogenous input vector (w): This vector represents external
inputs to the system that are not control inputs. These could
include Vin, d1, and d2 affecting the VSI’s performance.

∙ Control input vector (u): This is the vector of inputs that
the control system can manipulate to achieve desired per-
formance. In the case of a VSI, this could include control
signals.

The vector of the scheduling signal 𝜌(𝑡) ∈ 𝑅𝜌̄, 𝜌̄ = 9, the exoge-
nous input 𝑤 ∈ 𝑅3, and the control input 𝑢 ∈ 𝑅9 are defined as:

𝜌 =
[
𝜌1 . . . 𝜌9

]𝑇
=
[
𝑥7 𝑥6 𝑥12 𝑥11 𝐶𝑓𝑖 𝑅𝑓𝑖 𝐿𝑓𝑖 𝐿𝑐𝑖 𝑅𝑐𝑖

]𝑇
𝑤 =

[
𝑉𝑖𝑛 𝑑1 𝑑2

]𝑇
, 𝑢 =

[
𝑢1 . . . 𝑢9

]𝑇 (27)

To show the VSI system Equations (1) to (12) in the form of an
P-LPVmodel in Equation (23), the varying parameters 𝜇(𝑡) ∈ 𝑅𝜇̄,
𝜇̄ = 10, are defined 𝜇(𝑡) = ℎ(𝜌(𝑡)) as follows:

⎧⎪⎪⎨⎪⎪⎩

𝜇1 = 0.5𝜔𝑐𝑖𝜌1, 𝜇2 = 0.5𝜔𝑐𝑖𝜌2, 𝜇3 = 0.5𝜔𝑐𝑖𝜌3,

𝜇4 = 0.5𝜔𝑐𝑖𝜌4, 𝜇5 = −𝜔𝑏𝜌5, 𝜇6 = −𝜌6∕𝜌7,
𝜇7 = −1∕𝜌7, 𝜇8 = −1∕𝜌9, 𝜇9 = 1∕𝜌9,

𝜇10 = −𝜌9∕𝜌8.

(28)

Hence, the LPV model of Equations (1–12) can be rewritten as:

𝑥̇1 = −𝜔𝑐𝑖𝑥1 + 𝜇1𝑥6 + 𝜇2𝑥7 + 𝜇3𝑥11 + 𝜇4𝑥12 (29)

𝑥̇2 = −𝜔𝑐𝑖𝑥2 − 𝜇3𝑥6 + 𝜇4𝑥7 + 𝜇1𝑥11 − 𝜇2𝑥12 (30)

𝑥̇3 = −𝑥6 + 𝑢1 (31)

𝑥̇4 = −𝑥5 + 𝐹𝑖𝑥7 + 𝜇5𝑥11 + 𝑢2 (32)

𝑥̇5 = 𝜇6 𝑥5 + 𝜇7𝑥6 + 𝑢3 (33)

𝑥̇6 = 𝜇8 𝑥5 − 𝜇8𝑥7 + 𝜔𝑛𝑖𝑥11 + 𝑢4 (34)

𝑥̇7 = 𝜇9 𝑥6 + 𝜇10𝑥7 + 𝜔𝑛𝑖𝑥12 + 𝑢5 + 𝑑1 (35)

𝑥̇8 = −𝑥11 (36)

𝑥̇9 = −𝜇5𝑥6 − 𝑥10 + 𝐹𝑖𝑥12 + 𝑢6 (37)

𝑥̇10 = 𝜇6 𝑥10 + 𝜇7𝑥11 + 𝑢7 (38)

𝑥̇11 = −𝜔𝑛𝑖𝑥6 + 𝜇8𝑥10 − 𝜇8𝑥12 + 𝑢8 (39)

𝑥̇12 = −𝜔𝑛𝑖𝑥7 + 𝜇9𝑥11 + 𝜇10𝑥12 + 𝑢9 + 𝑑2 (40)

Equations (29) to (40) can be rewritten in LPV compact form as:

𝑥̇ = 𝐴 (𝜇) 𝑥 + 𝐵1𝑤 + 𝐵2𝑢

𝑧∞ = 𝐶𝑥
(41)

where, the matricesA, B1, B2, and C are given in Appendix A. The
states x3, x6, x7, x8, x11, and x12, which have an important effect on
the system, are considered as control objective (z

∞
). Equation (41)

shows that only the matrix A is dependent on varying parameters
µ, while B1, B2, and C are constant and independent of µ.

For constructing a polytopic model, only three values for each
scheduling signal are considered, and they are the minimum,
middle, and maximum values of each scheduling signal interval
range. In this way, 𝑁 = 3𝜌̄ = 39 vertices are produced, which are
noted by𝑀𝑖 ∶= (𝐴𝑖, 𝐵1, 𝐵2, 𝐶). Then, the polytopic model of DGi
can be expressed as:

P𝑎 = {(𝐴 (𝜇) , 𝐵1, 𝐵2, 𝐶) | (𝐴 (𝜇) , 𝐵1, 𝐵2, 𝐶)

=
𝑁∑
𝑖=1

𝛼𝑖𝑀𝑖,

𝑁∑
𝑖=1

𝛼𝑖 = 1, 𝛼𝑖 ≥ 0} (42)

The matrix 𝐴(𝜇) is a continuous function in terms of the
parameter vector 𝜇(𝑡), depending on the scheduling signal 𝜌(𝑡)
according to parameter mapping (28).

3 Reduced P-LPVModel Using PCA Algorithm

The selection of the number of vertex models, denoted as
N, should be made with careful consideration of the system’s
operating range, nonlinearity effects, and system parameter
dimensions to ensure that all dynamic behaviours of the system
are adequately captured. However, it is important to note that
an increase in N leads to heightened complexity in controller
computations. The PCA method can be utilised to facilitate the
identification of a reduced regionwithin the parameter space [40–
42]. In the context of this problem, the presence of ten parameters
(𝜇̄ = 10) necessitates the utilization of 210 vertices in order to
construct a polytopic model for the system.

Such a high number of vertices significantly increases the com-
putational workload. Therefore, the PCA-based parameter set
mapping technique is utilised to reduce the number of vertices.

In the PCA approach, and for the scheduling signal 𝜌(𝑡), the
mapping 𝜂(𝑡) = 𝑟(𝜌(𝑡)), where 𝑟 ∶ 𝑅𝜌̄ → 𝑅𝜂 and 𝜂 < 𝜇̄, should be
found such that the following reduced LPVmodel can be replaced
by Equation (41).

𝑥̇ = 𝐴̂ (𝜂) x + 𝐵1𝑤 + 𝐵2𝑢

𝑧∞ = 𝐶 𝑥
(43)

The parameters of the original polytopic model in Equation
(42) for i = 1,2,. . . ,N are collected to form a 𝜇̄ ×𝑁 matrix Θ =
[𝜇1, 𝜇2, . . . , 𝜇𝑁] called the data matrix, where µi is the parameter
vector evaluated at the ith vertex. The normalised form of the data
matrix Θ𝑛 =

∏
(Θ) with zero mean and unit standard deviation

can be obtained by applying an affine law [40]. Then, the
following singular value decomposition of Θ𝑛 is performed.

Θ𝑛 =
[
𝑈̂ 𝑈

] [Σ̂ 0

0 Σ

][
𝑉̂𝑇

𝑉𝑇

]
(44)
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FIGURE 3 Variations of V versus 𝜂.

where Σ̂ and Σ are diagonal submatrixes whose elements are the
significant and nonsignificant singular values, respectively. By
picking up the significant singular values and their associated
submatrices 𝑈̂, Σ̂, and 𝑉̂, and eliminating the nonsignificant
singular values, one can write Θ̂𝑛 = 𝑈̂ Σ̂𝑉̂𝑇 ≈ Θ𝑛, in which Θ̂𝑛

is an approximation of the normalised data matrix Θ𝑛. The
submatrix 𝑈̂ is used as a basis of the significant column space
to realise the reduced mapping:

𝜂 (𝑡) = 𝑟 (𝜌 (𝑡)) = 𝑈̂𝑇Π (ℎ (𝜌 (𝑡))) = 𝑈̂𝑇Π (𝜇 (𝑡)) (45)

So, the approximate mapping of 𝐴̂(.) in Equation (43) is related to
Equation (41) by the following equation:

𝐴̂ (𝜂 (𝑡)) = 𝐴 (𝜇̂ (𝑡))

𝜇̂ (𝑡) = Π−1 (𝑈̂𝜂 (𝑡)
)
= Π−1 (𝑈̂𝑈̂𝑇Π (𝜇 (𝑡))

) (46)

where
∏−1 indicates the rescaling of each row. So, by using Θ̂𝑛 to

make new vertices (𝐴̂𝑖 , 𝐵1, 𝐵2, 𝐶), the P-LPV model in Equation
(42) can be reduced to:

P̂ = {
(
𝐴̂ (𝜂) , 𝐵1, 𝐵2, 𝐶

) |𝐴̂ (𝜂) =
𝑁̂∑
𝑖=1

𝛼𝑖𝐴̂𝑖} (47)

where
∑𝑁̂

𝑖=1 𝛼𝑖 = 1, 𝛼𝑖 ≥ 0, and 𝑁̂ = 2𝜂 is the number of vertices,
and (𝐴̂𝑖 , 𝐵1, 𝐵2, 𝐶) is the ith vertex model. The following index can
beused as a criterion tomeasure the accuracy of the approximated
polytopic model in Equation (47) relative to the actual polytopic
model in Equation (42):

𝑉𝜂 =
𝜂∑
𝑖=1

𝜎2
𝑖
∕

𝜇̄∑
𝑖=1

𝜎2
𝑖

(48)

where σi is the ith singular value. To choose the appropriate value
for 𝜂, Equation (48) is shown in Figure 3 for different values of
𝜂. It can be seen in Figure 3, 𝜂 = 6 is the best value regarding the
desired acceptable percentage error. Consequently, the simplified
polytopic model in Equation (47) will only contain 𝑁̂ = 26 = 64

vertices.

4 The Robust Gain-Tuning Method

This section uses an LMI-based P-LPV/PCA/H
∞
control method

to adjust the primary controller gains and droop coefficients of
an AC islanded MG. The proposed method includes all system
uncertainties as a P-LPV framework for applying the control gains
tuning approach. The PCA algorithm reduces the scheduling
parameter size. The optimal control gains are computed by solv-
ing the relevant LMIs defined on the reduced P-LPVmodel based
on the H

∞
performance and stability index. The primary control

gains and droop coefficients are chosen such that the errors
between the optimal and actual control signals are minimised.
In the suggested method, the order and structure of the primary
control remain unchanged.

The H
∞
performance can be achieved by synthesising a control

signal (u=KH∞
x) for Equation (47), whichminimises attenuation

for any external input 𝑤 ∈ 𝑙2[0,∞). This is confirmed by 𝑍∞ ∈ 𝑙2
and ||𝑍∞||2⟨𝛾||𝑤||2, where || ⋅ ||2 is the 2-norm index, l2 is L2-
norm space, and ||𝑤||2 ≠ 0. The following Lemma outlines the
conditions for the optimal state-feedback controller gain matrix,
KH∞

, to stabilise the closed-loop system and demonstrate the
attenuation level γ.

Lemma 1. [43–45] (The problem of suboptimal overall H
∞

static state feedback control): If matrices Q = QT
> 0 and T,

with appropriate dimensions, satisfy the following LMIs, then the
state feedback controller gain KH∞

= TQ−1 achieves quadratic
stabilisation of the P-LPV system in Equation (47) for disturbance
attenuation γ > 0.

⎡⎢⎢⎢⎣
𝐴̂𝑖𝑄 + 𝑄𝐴̂𝑇

𝑖
+ 𝐵2𝑇 + 𝑇𝑇𝐵2

𝑇
∗ ∗

𝐵𝑇
1 −𝐼 ∗

𝐶𝑄 0 −𝛾2𝐼

⎤⎥⎥⎥⎦ < 0

𝑖 = 1, 2, . . . , 𝑁̂

(49)

where, the symbol * indicates symmetric blocks in the LMIs.

Using the above Lemma 1 and solving the LMIs of Equation (49),
the gain of the controller KH∞

can be obtained. Then, the optimal
control signal for each DG is realized as:

𝑈∞ = 𝐾𝐻∞ 𝑥 (50)

The primary controller gains and droop coefficients vector is:

𝐺 ∶=
[
𝑚𝑃𝑖, 𝑛𝑄𝑖, 𝐾𝑃𝑉𝑖, 𝐾𝐼𝑉𝑖, 𝐾̄𝑃𝑉𝑖, 𝐾̄𝐼𝑉𝑖, 𝐾𝑃𝐶𝑖, 𝐾𝐼𝐶𝑖, 𝐾̄𝑃𝐶𝑖, 𝐾̄𝐼𝐶𝑖

]
(51)

Defining the following relative error signals as:

𝑒𝑗 ∶=

(
𝑢𝑗

𝑈∞𝑗

− 1

)
(52)

where [⋅]𝑗 denotes the jth element of each vector, to form the
error signal (e). It should be noted that since each control signal
belongs to a different variation range, relative error has been
used to normalise them. For the offline computation of the
error signal, which is related to both of the actual and the
optimal control signals, the state variables (x), are measured
at the nominal operation condition. This presumption allows
for a systematic evaluation of the control system’s performance
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FIGURE 4 The simulated MG.

by providing a benchmark for the deviation analysis, thereby
enabling the precise adjustment of the control signals in accor-
dance with the desired system behaviour.The relative error (e)
is determined by applying Equation (53) on Equations (14) to
(22), and then the optimal primary controller gains and droop
coefficients are calculated by solving the following optimisation
problem:

𝐺∗ = 𝑀𝑖𝑛
𝐺

‖𝑒‖ (53)

4.1 Performance Improvement Discussion

By using the optimal primary control gains 𝐺∗, it is clear
that error signals in Equation (52) are minimised. On the
other hand, from Equation (52) it can be concluded that 𝑢 =
𝑈∞ + 𝑑𝑖𝑎𝑔{𝑈∞}𝑒. By subsisting it at Equation (41), it results
that 𝑑 = 𝑑𝑖𝑎𝑔{𝑈∞}𝑒 is added to the disturbance signal in
Equation (41). So, it can be seen that by implementing the
optimisation in Equation (52), you will basically impose less
disturbance to the system, and this will increase the system
performance.

5 Numerical Simulation Results

This section presents the simulation results to demonstrate the
effectiveness of the proposed method (PM). The AC islanded
MG is simulated in MATLAB/Simulink under various scenarios,
such as MG load variations, faults, plug-and-play, and parameter
alterations. These simulations are critical in ascertaining both
the effectiveness and the robustness of the proposed scheme.
Figure 4 shows a 380 V, 50 Hz islanded MG composed of four
DG units and two loads. The parameters of the simulated MG
are listed in Table 1. The proposed methods are compared with
the conventional method (CM) referenced in [46] and the robust
method (RM) in [35] to show the better dynamic performance
and efficiency of the proposedmethod. The conventional primary

control parameters, which are shown in Table 2, have beenwidely
used in many studies.

According to the simulation data in the nominal case, the
following ranges of variations are considered for scheduling
signals.

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝜌1 = 28 ± 20% 𝜌2 = 537 ± 10%

𝜌3 = −48 ± 35% 𝜌4 = 0 ± 0.1

𝜌5 = 5 × 10
−5 ± 10% 𝜌6 = 0.1 ± 10%

𝜌7 = 1.35 × 10
−3 ± 10% 𝜌8 = 3.5 × 10

−2 ± 10%

𝜌9 = 0.03 ± 10%

(54)

Allowing for three values of minimum, middle, and maximum
for each scheduling signal yields N = 39 vertices for the initial
polytopic model of each DG. Applying the PCA algorithm, the
reduced polytopic model in Equation (7) is achieved with 𝑁̂ =
26 = 64 vertices. Finally, the primary control gains are obtained
after solving LMIs in Equation (50) and the optimisation problem
in Equation (54).

5.1 Loads Change Scenario

This section demonstrates the load changes scenario to showcase
the performance of the PM. At t = 0 s, the MG operates in an
islanded mode, and the primary control is activated simulta-
neously. The load changes occur at t = 0.5, 1, and 1.5 s based
on Table 3. In order to verify the H

∞
performance criterion for

each DG, Table 4 tabulates the performance index achievement
level. Figure 5 displays the frequency, active power, and voltage
output of DGs. The results indicate that the PM outperforms the
CM and RM approaches. Additionally, the frequency and voltage
deviations of the MG are within a stable range (Δf =± 0.3Hz and
ΔV = 10%) [47]. Proper adjustment of the droop coefficients and
other primary control gains ensures the correct regulation of MG
frequency and voltage.
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TABLE 1 The simulated MG parameters.

Description DG 1&2 DG 3&4

Rating 45 kVA 34 kVA
Rc (Ω) 0.03 0.03
Lc (mH) 0.35 0.35
Frequency (Hz) 50 50
ω 314 314
Rf (Ω) 0.1 0.1
Lf (mH) 1.35 1.35
Cf (µF) 50 50

Description Line 1 Line 2 Line 3

Rli (Ω) 0.23 0.35 0.23
Lli (µH) 318 1847 318

Description Load 1 Load 2

P(kW) + jQ (kVar) (12 + j12) (15.3 + j7.6)

Description Parameter DG 1&2 DG 3&4

Droop coefficients mP 4.7 × 10−5 6.25 × 10−5

nQ 0.00065 0.00075
Voltage control gains 𝐾𝑃𝑉𝑖, 𝐾̄𝑃𝑉𝑖 0.105 0.105

𝐾𝐼𝑉𝑖, 𝐾̄𝐼𝑉𝑖 441 441
Current control gains 𝐾𝑃𝐶𝑖, 𝐾̄𝑃𝐶𝑖 15.75 15.75

𝐾𝐼𝐶𝑖, 𝐾̄𝐼𝐶𝑖 21000 21000

TABLE 2 The conventional primary control gains [46].

Description
Gain

parameter DG 1&2 DG 3&4

Droop
coefficients

mP 9.4 × 10−5 12.5 × 10−5

nQ 0.0013 0.0015
Voltage control
gains

𝐾𝑃𝑉𝑖, 𝐾̄𝑃𝑉𝑖 0.1 0.05

𝐾𝐼𝑉𝑖, 𝐾̄𝐼𝑉𝑖 420 390
Current control
gains

𝐾𝑃𝐶𝑖, 𝐾̄𝑃𝐶𝑖 15 10.5

𝐾𝐼𝐶𝑖, 𝐾̄𝐼𝐶𝑖 20,000 16,000

TABLE 3 The loads change scenarios.

Description of
scenarios

Load_1
(P(kW)+ jQ
(kVar))

Load_2
P(kW)+ jQ
(kVar)

0< t< 0.5(s) (12 + j12) (15.3 + j7.6)
0.5< t < 1(s) 1.2 × (12 + j12) (15.3 + j7.6)
1 < t< 1.5(s) (12 + j12) 0.8 × (15.3 + j7.6)
1.5 < t (s) (12 + j12) Disconnected

5.2 Single Phase Fault Scenario

The following scenario tests the robustness of the PM by applying
a single phase to the ground fault. A single phase-to-ground fault
occurs at t = 0.5 s and t = 1.2 s at points F1 and F2 of the MG for a
duration of 0.04 s. Additionally, Figure 6 displays the frequency,
active power, and RMS voltage of DGs. The results indicate that
after the short circuit, the MG recovers to its stable state, but
the PM demonstrates better performance than the CM and RM
approaches.

5.3 Plug- and- Play Scenario

The following procedure is conducted to test the robustness of
the PM in a plug-and-play scenario. At t = 0 s, the MG starts
operating in islanded mode with the primary control in action.
At t = 0.5 s, DG3 is disconnected from the MG, and at t =
1.5 s, it is reconnected. Figure 7 illustrates the frequency, active
power, and voltage output of the DGs. The results show that the
performance of the PM is better than that of the CM and RM
approaches. The frequency and voltage deviations of the MG are
within the stable range. In particular, the CM approach becomes
unstable, but the proposed controller prevents instability of
the MG.
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FIGURE 5 Comparison of the DGs output in loads changing
scenario. (a) Frequency, (b) Active power and (c) Vrms (pu).

5.4 Parameters Change Scenario

The following section describes the scenario of parameter
changes to illustrate the performance of the PM. At t = 0 s, the
MG operates in an islanded mode, and the primary control is
activated. The parameter changes occur at t = 0.5, 1, and 1.5 s

FIGURE 6 Comparison of the DGs output in the case of the fault
scenario. (a) Frequency, (b) Active power and (c) Vrms (pu).
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FIGURE 7 Comparison of the DGs in the plug-and-play scenario.
(a) Frequency, (b) Active power and (c) Vrms (pu).

based on Table 5. Figure 8 depicts the frequency, active power,
and voltage output of DGs. The results of the PM approach
are observed to be superior to the CM and RM approaches.
Furthermore, the frequency and voltage deviations of MG are
found to be within the stable range. The results show that the
CM approach becomes unstable, while the proposed controller
prevents instability of theMG. This highlights the optimal tuning
of the droop coefficients and other primary control gains, which
leads to the proper regulation of MG frequency and voltage.

6 Conclusion

This paper proposes a novel approach for tuning the primary
controller gains and droop coefficients in AC-islandedMGs using

FIGURE 8 Comparison of the DGs output in parameters change
scenario. (a) Frequency, (b) Active power and (c) Vrms (pu).

an LMI-based P-LPV-PCA/H
∞
control structure. The objective

is to regulate the MG frequency considering the nonlinearity
and uncertain parameters of the system. The proposed method
models all system uncertainties as a P-LPV framework for
applying the parameter tuning approach. The PCA algorithm
reduces the scheduling parameter size, and the control gains
are computed by solving the LMIs defined on the obtained P-
LPV model based on H

∞
performance and stability. The primary
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TABLE 4 The verification of the H
∞
performance criterion for γ = 1.3 in loads change scenario.

Item DG1 DG2 DG3 DG4

||𝑍∞||2||𝑤||2 < 𝛾 3.52 × 10−4 <
1.3

3.55 × 10−4 <
1.3

3.53 × 10−4 <
1.3

3.55 × 10−4 <
1.3

TABLE 5 The parameters change scenario.

Description of
scenarios Cf (µF) Rf (Ω) Lf (mH)

0< t< 0.5 (s) 50 0.1 1.35
0.5< t < 1 (c) 1.1 × (50) 1.2 × (0.1) 1.2 × (1.35)
1 < t < 1.5 (s) 0.9 × (50) 0.8 × (0.1) 0.8 × (1.35)
1.5 < t (s) 50 0.9 × (0.1) 1.1 × (1.35)

control gains and droop coefficients are optimised to minimise
the errors between the optimal and actual control signals. The
order and structure of the primary control remain unchanged in
the proposed approach, making it easy to implement on digital
hardware devices of any type. The proposed method is applied
to the MG in MATLAB/Simulink, and the simulation results
demonstrate the authenticity, effectiveness, and efficiency of the
proposed process for MG frequency regulation in the presence of
uncertainties, disturbances, nonlinearity, and dynamic changes
in MGs. The same strategy may be utilised concurrently in a
future study to tune the secondary controller gains.

Nomenclature

𝐶𝑓𝑖 , 𝐿𝑓𝑖 , 𝑅𝑓𝑖 The low-pass-filter variables

𝐹𝑖 The constant term

𝐼∗
𝑙𝑑𝑖
, 𝐼∗

𝑙𝑞𝑖
(𝑉∗

𝑖𝑑𝑖
, 𝑉∗

𝑖𝑞𝑖
) The direct-quadrature axis component of

the current (voltage) loop input

𝐼𝑙𝑑𝑖 , 𝐼𝑙𝑞𝑖 The component of the output current of the
inverter bridge along the direct-quadrature
axis.

𝑚𝑃𝑖, 𝑛𝑄𝑖 The gain of the droop controller

𝑃𝑖∕𝑄𝑖 The calculated power (active / reactive) of
DGi

𝑅𝑐𝑖 , 𝐿𝑐𝑖 The variables of the output connector

𝑉𝑖𝑛 The nominal voltage

𝑉∗
𝑜𝑑𝑖
, 𝑉∗

𝑜𝑞𝑖
The direct-quadrature axis component of
the output of the voltage droop controller

𝑉𝑜𝑑𝑖 , 𝑉𝑜𝑞𝑖(𝐼𝑜𝑑𝑖 , 𝐼𝑜𝑞𝑖) The direct-quadrature axis component of
the voltage (current) of VSI

𝜔𝑏 The nominal angular value

𝜔𝑐𝑖 The cut-off frequency of low-pass-filter

𝜔𝑖 The angular frequency of DGi

𝜔𝑛𝑖 The nominal angular frequency

𝜙𝑑𝑖, 𝜙𝑞𝑖 , 𝛾𝑑𝑖 , 𝛾𝑞𝑖 Supplementary state variables
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Appendix A

The A(µ), B1, B2, and C in Equation (41) are set as follows:

𝐴 (𝜇) =⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−𝜔𝑐𝑖 0 0 0 0 𝜇1 𝜇2 0 0 0 𝜇3 𝜇4
0 −𝜔𝑐𝑖 0 0 0 −𝜇3 𝜇4 0 0 0 𝜇1 −𝜇2
0 0 0 0 0 −1 0 0 0 0 0 0

0 0 0 0 −1 0 𝐹𝑖 0 0 0 𝜇5 0

0 0 0 0 𝜇6 𝜇7 0 0 0 0 0 0

0 0 0 0 𝜇8 0 −𝜇8 0 0 0 𝜔𝑛𝑖 0

0 0 0 0 0 𝜇9 𝜇10 0 0 0 0 𝜔𝑛𝑖

0 0 0 0 0 0 0 0 0 0 −1 0

0 0 0 0 0 −𝜇5 0 0 0 −1 0 𝐹𝑖
0 0 0 0 0 0 0 0 0 𝜇6 𝜇7 0

0 0 0 0 0 −𝜔𝑛𝑖 0 0 0 𝜇8 0 −𝜇8
0 0 0 0 0 0 −𝜔𝑛𝑖 0 0 0 𝜇9 𝜇10

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A1)

𝐵𝑇
1
=
⎡⎢⎢⎣
0 0 1 𝐾𝑃𝑉𝑖 𝐾𝑃𝑉𝑖𝐾𝑃𝐶𝑖∕𝐿𝑓𝑖 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1

⎤⎥⎥⎦ (A2)

𝐵𝑇
2
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A3)

𝐶 =

⎡⎢⎢⎢⎢⎢⎢⎣

0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦
(A4)
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